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TIME DIFFERENTIATION OF TENSORS DEFINED ON A SURFACE MOVING THROUGH A 
THREE-DIMENSIONAL EUCLIDEAN SPACE* 

1U.Z POVSTENKO and 1A.S. PODSTRIGACH 

The well-known formulas for the derivatives of Eulerian and Lagrangian 
basis vectors are used to derive expressions for the derivatives of the 
surface, volume and double tensors defined on a surface moving through 
an Euclidean space. In the case of a plane moving through space with 
constant velocity, the results obtained correspond to the two-dimensional 
analogs of the results obtained in /l/. A relation connecting the derivat- 
ives in question with the derivative (Wit) is given, and the concept of 
the derivative (I%%) is introduced for the three-dimensional case. 

In /l/ the author developed a theory of the time differentiation of tensors in the three- 
dimensional case, based on introducing Euclidean and Lagrangian basis vectors and a polyadic 
renresentation of tensors in these bases. The problem of the time differentiation of tensors 
was also considered in /2, 3/ 
earlier work was also given. 
tinuous media, the derivative 
on a surface moving through a 
introduced. The results were 
defined on a moving surface. 

using a general formulation, where a detailed analysis of the 
In /4-61, in the course of studying wave propagation in con- 
(@fir) of the components of three-dimensional vectors defined 
three-dimensional Euclidean space (at the wave front) was 
generalized in /7/ to the case of surface and dual tensors 

1. The law of motion of 
bed by the equations 

the points belonging to a three-dimensional continuum is descri- 

zi = a+ (E', E*, P, t), Ek = Ek (z', za, 9, :) (1.1) 

where zi are the spatial (Eulerian) coordinates, Ek are the material (Lagrangian) coordin- 
ates and t is the time. The partial derivatives of the radius vector of the points of the 
space 

(1.2) 

define, respectively, the fixed Eulerian and moving Lagrangian basis. The tensor T with a 
typical distribution of the indices can be represented in invariant form /l/ as 

T=Tk,,,EkF= TAkEtEAm .m (1.3) 

The velocity vector of a particle with material coordinates is given by 

(1.4) 

The time derivative of the tensor T canbeobtained after establishing the formulas for differ- 
entiation of the basis vectors 
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(1.5) 

(,q )F.=-V;~"kE"P 

The second and fourth formulas of (1.5) were derived in /l/ 
Lagrangian and Eulerian bases coincide. Using the relation 

for the initial instant when the 

we can show that the formulas (1.5) remain valid at any instant of time. The symbol VkA means 
that the covariant differentiation is carried out with help of the Christoffel symbols r$. 
Thus we arrive at the following expressions for the derivatives of the tensor: 

The following relations can be shown to hold: 

where ,,, LTrk is a Lie derivative of the components Tc 181 

aT “’ adk 
LTp; = uAp 

a@ 
~-T~~~+T!pk aF;m 

atP 
- = &‘V,“Tf$ - Tn,yV;vAk + T!‘pkV$hp 

Using the notation 

we can write (1.8) in the form 

Formulas (1.5) enable us to calculate the derivative of the metric tensor components 

whose contraction yields the equation of continuity 

(63, +pv.v=o 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

2. We define the surface moving through the space with help of the following equations: 

2' = 2 (u', 110, t), 2 = 2 (01, 02, t) (2.1) 

Here (la are the Eulerian surface coordinates and 0" the Lagrangian surface coordinates 
connected by the relations 

ua = ua (01, 01, t), 06 = OB (22, u3, t) (2.2) 
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As usually used in the theory of surfaces in three-dimensional space, the latin indices take 
the values 1, 2, 3, and the greek indices the values 1, 2 /9/. We note that the introduction 
of the Eulerian coordinatestothe moving surfaces is not trivial. We shall say that a point 

is "fixed" on the surface if its velocity is directed along the normal to the surface /lo, 
ll/. Thus the equation 

ar ( ) a2 
ata = U(“)U, ( 1 3-a = U(,)d 

does in fact define the Eulerian coordinates u" on the surface, while 

(2.3) 

(2.4) 

represents the velocity of the particle with material coordinates ma . We stress that 

(arm), and (~/~t)~ are different quantities. From now on we shall always take v as (at/&),. 

The velocity of the point in the "two-dimensional" world is given by the partial derivative 

and the following relation holds: 

The partial derivatives 

form the local Eulerian 
distribution of indices 

(2.5) 

(2.6) 

and Lagrangian bases on the surface. The surface tensor T withtypical 
can be written in the form 

T=IT?$&‘=Tf&&a~B (2.7) 

The following basic formulas are used in the time differentiation of tensors: 

%I) 
v(&Pae + ~a (2.8) 

Here aae and baP are the components of the first and second quadratic form of the surface, 
and G& are two-dimensional Christoffel symbols. The last three formulas of (2.8) were 
given in /12/. Using (2.7) and (2.8) we obtain 

Tf’&j?v~nj -I- T%b#‘vo,> aat@ + TiF 
I 

%Q nap + T?@ aus ag %I) 
(2.91 
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The two-dimensional analogs of the formulas (1.71, (1.8), (l.lo), (1.11) (Cris the surface 
de1 operator) remain valid 

($),++v.VxT (2.10) 

! J 
at haB_-[ (J?$it,jY-LT$a] adaAs aT$ 

3 $_?$t j, - LT$@ 

a?$$ 
i > 

ATA= 

at aaa u 
6 =+... %AafiB 

LTra 
aTy 

& =phD-- 
ad 

T!g @$ + T$= a$’ _vAQVphT?aa-TfsPVpn~ha+ T$*Ve~uh" (2.11) 

The (Mt)-derivative operation on-the surface tensor components was first considered in 

PI. The fourth formula of (2.10) provides the relation connecting the operation of differen- 
tiating the tensor components in the Eulerian basis with constant @ , and the (b/b+differen- 
tiation of the tensor components in the Lagrangian basis, This also clarifies the reason for 
choosing the notation (WSt) in (1.10). Thus the concept of (&&)-derivative characterizes 
the variation in the tensor components in both the surface and spatial case. We note that 
the @,%:)-derivative of the tensor components on the surface does not descibe fully the 
variation of the tensor with time, since the terms with normal components appearing in (2.9) 
are not included in the discussion. The following derivative of the metric tensor components 
is of interest: 

Its convolution leads to the equation of continuity at the surface /lo/ 

@Jr. 
i > Z-0 

+pr(V,wa- v~,,z&a)=O (2.13) 

When ~(~1 = COnSt, b& = 0, i.e. when a plane moves through space with constant velocity, the 
results of Sect.2 reduce to those of Sect.1, the only difference being that the latin indices 
are replaced by greek indices. 

3. Let us derive the formulas for the differentiation of three-dimensional vectors 

T = T!,,,Ek h’” (3.1) 

regarded on the surface as functions of (ua,l) or (W", tf- The time derivatives of the basis 
vectors are 

(2)" = q,d’P,t Epv 
aE” 

i 1 at” = - uf,,,rspI’~f Eq (3.2) 

= V'PP&‘ is)_ =- v’F;Eq 

Consequently 



Using the relations 

in place of the formulas (1.3), we obtain 

(+)"=[(~\x+ v(,)nPV,T1,]Br:Em z61'be.nE." 
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(3.3) 

(3.4) 

The first formula of (3.4) shows that the components of the time derivative of thespatial 

tensor for constant ua at the surface, are equal to the (6/S/) -derivative of the components 
of this tensor studied in /7/. Using (2.10) and (3.3), we Can Write the (3.3) (Mb) -deriva- 
tive as foll0wS: 

WY?,, 
i\I 

-,r!sOgT~&+~T?,&- d’TI:J;mr teTfm = x$‘V,Tfm (3.5) 

4, mowing the derivatives (2.8) and (3.21, we can easily differentiate the dual tensors 
provided that we write them in invariant form, e.g. 

W= WSL$,,~,~E~~E~== W~,$I&VM~&~ (4.1) 

In describing the dependence of the dual tensor components on a point on the surface, two 
cases sre possible /7/: relations (2.1) are only implied, i.e.vk$ =ji(g, Ue,t), wb'm =j~(d, 
08, t), or S? are alreadyeliminatedusing (2.11,i.e. I@& =js(xP,t), w&k= = j,(e)=, t). The derivat- 

i;res (aW&J&),, II and (~~$b%),,,, correspond to the first case, and (aw?$k&)t), and (aw$*m/8t)b. 
to the secondcase. 

Thus we have four different representations of (aW/at), and four different representations 
of (awlat),. Their derivation is not difficult, but cumbersome, and is therefore not given 
here. The relations connecting the differentiation of the dual tensor components on the 
Eulerian basis with the (S/Gt)-derivative of the components of the same tensor on the Lagrangian 
basis is given by the formulas * 

[('Ty%!,,U ]~a~~~~~~= 8WF &hsAfi&Em + V(,)?SP,WP~.$ (4.2) 

(4.3) 

(4.4) 

w~~~v~~~~u- W~~~VahvAP+U9(IiY~~IjW-W~~kr~) 

The Lie derivative is given by the first formula of (2.11) and involves the greek indices only, 
the covariant differentiation r,wPe'F, involves the latin indices only and is carried out with 
help of the three-dimensional Christoffel symbols, and the covariant derivative V,,W$,, has 
the following structure /9/: 

5. The methods developed here can be utilized to study the propagation of waves through 
a continuous medium /4, 6, 13/ and a flame front /4/, in the theory of plastic flow and 
fracture /6/, to study surface phenomena /lo, 11,' 14/, in dynamic problems of the non-linear 

* The operation of the (&6t) -derivative (4.3) was introduced in /7/ and the equivalent repre- 
sentation (4.4) in the paper by M.A. Grinfel'd. (Wt)-derivative and its properties. Dep. v 
VINITI No.1255-76, Moscow, 1976. 
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theory of shells, etc. 
As an example, we will give expressions for the surface and normal components (5.1) as well 

as the spatial components (5.2) of the acceleration j=(ik.3!), of points on a surface moving 
through three-dimensional space 

(5.1) 

It was noted in /11/ that the expressions ja=(G‘/at)o given in /lo, 14/ do not hold in general, 
and the terms are connected with the change in the local basis at the surface. The latter 
must be taken into account in the expressions for the components of the acceleration, and (5.1) 
take this change into account. 
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ON THE SURFACE VISCOSITY AT THE BOUNDARY BETWEEN PHASES* 

A.G. BASHKIROV and G.A. KOROL'KOV 

The equations of motion of the interphase boundary are considered. It is shown 

that the conditions at the surface separating the phases obtained in /l, 2/ 
by different methods, are identical. The study of the dynamics of the fluid- 
fluid interface was initiated by Bussinesq /3/ who postulated a linear 
relationship between the surface stress tensor TaB and the strain rate 

tensor SaB , assigning two viscosity coefficients to the surface, the dilatation 
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